

Dynamic analysis of the effect of immigration on the demographic background of the pay-as-you-go pension system

Massimo Angrisani Sapienza University of Rome, Italy

Anna Attias Sapienza University of Rome, Italy

Sergio Bianchi University of Cassino, Italy

Zoltàn Varga Szent Istvàn University, Hungary

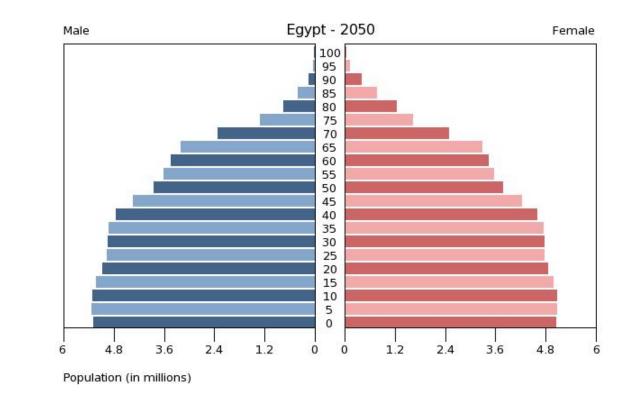
Outline

- Problem setting and motivation
- The model:
 - The Leslie model
 - The modified model
 - A stabilization theorem
 - Adding immigration
 - Controlling the population to demographic equilibrium
- Immigration scenarios and simulations
- Discussion
- References

Problem Setting and motivation

Demographic equilibrium as a *key variable* to ensure the sustanaibility of a pay-as-you-go pension system.

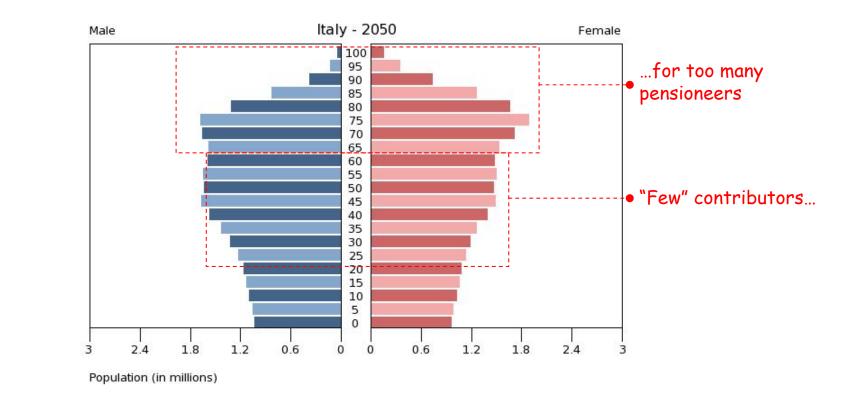
"Ideal" shape



Problem Setting and motivation

The problem is that population pyramids of mature economies often display "critical" features

"Bad" shape



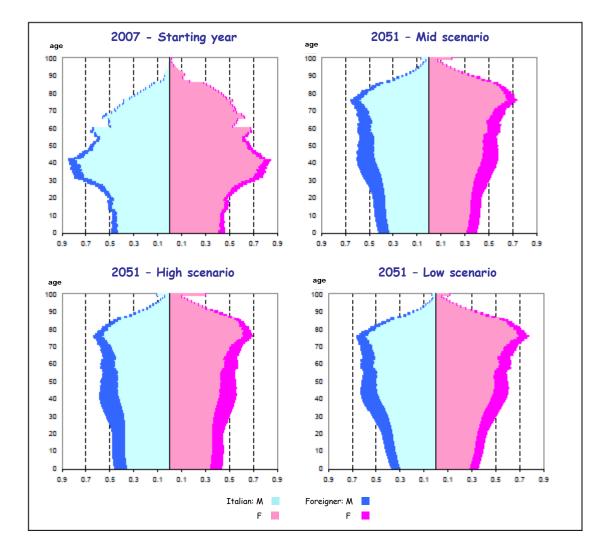
Problem Setting and motivation

With respect to previous estimates, ISTAT forecasts that the Italian population will grow more than 6 million people as a consequence of immigration.

In 2051 immigrants will represent 16,1%-18,4% of the whole population.

The basic idea:

Immigrants as a resource for stabilizing the population distribution in order to achieve the sustainability of the payas-you-go pension system.



Problem Setting and motivation

Pros

Rejuvenating the age structure of the population owing to two main reasons:

- Immigrants are generally young (*immediate effect*)
- Immigrants generally display ferility rates higher than the Italian one (*postponed effect*)

ISTAT Fe	ertility rates (I	nid scenario)
	2007	2051
Italian	1,36	(1,39)
Immigrants	2,35	1,86
L		Sector Contractions

Convergence to the reproductive behaviour of the Italian females

Remark

The analysis of the demography for the pension system is the very first step towards a more general solution also including the economic component.

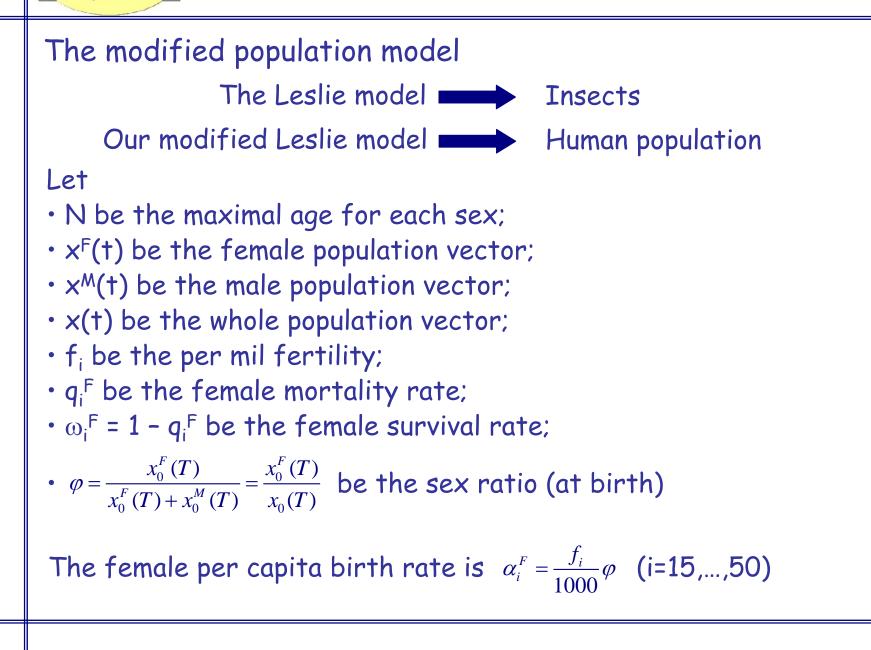
The basic population model

Consider a population without sex structure where:

- $N \in \mathbf{N}$ is the upper bound of the age of an individual;
- x_i(t) is the number of individuals of age belonging to [i, i+1[(for i = 0, 1,..., N-1) at time t;
- $\alpha_i \ge 0$ average per capita birth rate in the *i*-th age group;
- $0 < \omega_i < 1$ is the survival rate from age group *i* to *i*+1;

The population vector results	$x(t) = [x_0(t), x_1(t),, x_{N-1}(t)]^T$					
		α_0	α_{1}	•••	$lpha_{\scriptscriptstyle N-2}$	$\alpha_{_{N-1}}$
		ω_{0}	0	•••	0	0
and the system matrix is	L =	0	ω_{1}		0	0
		•		•••	•	
		0	0		ω_{N-2}	$\left[egin{array}{c} lpha_{N-1} \\ 0 \\ 0 \\ \cdot \\ 0 \end{array} ight]$

The population dynamics (so called Leslie model) is x(t+1) = L x(t)



The modified population model

The modified Leslie female matrix becomes

$$L^{F} = \begin{bmatrix} 0 & 0 & \dots & \alpha^{F}_{15} & \dots & \alpha^{F}_{50} & 0 & \dots & 0 & 0 \\ \omega_{0}^{F} & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ 0 & \omega_{1}^{F} & \dots & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 & 0 & 0 & \omega_{N-2}^{F} & 0 \end{bmatrix}$$

The dynamics of females reads as $x^{F}(t+1) = L^{F}x^{F}(t)$

The modified Leslie male matrix becomes

$$L^{M} = \begin{bmatrix} 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ \omega_{0}^{M} & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ 0 & \omega_{1}^{M} & \dots & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \dots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 & 0 & 0 & \omega_{N-2}^{M} & 0 \end{bmatrix}$$

The dynamics of males reads as $x^{M}(t+1) = L^{M}x^{M}(t) + \frac{(1-\varphi)}{\varphi}e_{1} \circ L^{F}x^{F}(t)$